Anatomical distribution and response patterns of reticular neurons active in relation to acoustic startle.
نویسندگان
چکیده
A population of reticulospinal neurons with short latency response to startle-inducing stimuli was identified in the nucleus reticularis pontis caudalis (NRPC) and nucleus gigantocellularis (NRGC) of the medial pontomedullary reticular formation. The threshold and magnitude of response to auditory stimuli was correlated in these cells and in the muscles mediating startle. Startle-related neurons were significantly more likely to have high conduction velocity spinal projections than adjacent cells not related to startle. Startle-related cells were not 'dedicated' to startle, but were active in relation to spontaneous movements. Both the unit response of the startle-related cells and the startle response recorded in muscles were suppressed by the prior presentation of a weak prepulse. Thus, prepulse inhibition of startle occurs at, or prior to, the medial pontomedullary reticular formation. We conclude that these reticulospinal cells convey the output of the brainstem system modulating and triggering startle.
منابع مشابه
Somatostatin in the pontine reticular formation modulates fear potentiation of the acoustic startle response: an anatomical, electrophysiological, and behavioral study.
The amplitude of the acoustic startle response (ASP) in rats is increased in the presence of a cue that has previously been paired with an aversive stimulus such as a footshock. This phenomenon is called fear-potentiated startle and is a model to study the neuronal and neurochemical mechanisms of the acquisition and expression of fear. The present study investigated the role in fear-potentiated...
متن کاملGiant neurons in the rat reticular formation: a sensorimotor interface in the elementary acoustic startle circuit?
The mammalian acoustic startle response (ASR) is a relatively simple motor response that can be elicited by sudden and loud acoustic stimuli. The ASR shows several forms of plasticity, such as habituation, sensitization, and prepulse inhibition, thereby making it an interesting model for studying the underlying neuronal mechanisms. Among the neurons that compose the elementary startle circuit a...
متن کاملCaudal pontine reticular formation of C57BL/6J mice: responses to startle stimuli, inhibition by tones, and plasticity.
C57BL/6J (C57) mice were used to examine relationships between the behavioral acoustic startle response (ASR) and the responses of neurons in the caudal pontine reticular formation (PnC) in three contexts: 1) responses evoked by basic startle stimuli; 2) the prepulse inhibition (PPI) paradigm; and 3) the effects of high-frequency hearing loss and concomitant neural plasticity that occurs in mid...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملT-type Ca2+ channels in thalamic sensory gating and affective Disorders
Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 457 2 شماره
صفحات -
تاریخ انتشار 1988